

Electrostatics

- Electrostatics is the **branch of physics** that deals with **electric charges at rest**. It involves studying the **forces, fields, and potentials** produced by stationary charges and their **interactions**.
- When charges move, we enter **current electricity**, but in electrostatics, **charges are static**, i.e., they do not flow.
- **Applications:**
 - Photocopiers and laser printers
 - Electrostatic air filters
 - Painting and coating processes
 - Capacitors in electrical circuits

◆ Electric Charge

- **Definition:**

Electric charge is a **fundamental property of matter** due to which materials experience an **electric force** when placed in an electric field.

- **Types of Charges:**

1. **Positive charge (+):** Deficiency of electrons.
2. **Negative charge (-):** Excess of electrons.

- **Unit:**

- **SI unit:** Coulomb (C)
- **1 Coulomb = charge of 6.25×10^{18} electrons**

- **Properties of Charge:**

1. **Quantization:**

Charge exists in discrete packets called *elementary charges* (e).

$$q = ne, e = 1.6 \times 10^{-19} C$$

2. **Conservation:**

The total charge of an isolated system remains constant.

3. **Additivity:**

Net charge is the algebraic sum of individual charges.

4. **Relative Nature:**

A body appears charged only with respect to another body.

◆ Coulomb's Law

- **Statement:**
- The electrostatic force between two-point charges is **directly proportional to the product of the charges** and **inversely proportional to the square of the distance** between them.

$$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

- **Where:**

- F : Electrostatic force (N)
- q_1, q_2 : Magnitudes of the charges (C)
- r : Distance between them (m)
- $\epsilon_0 = 8.854 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$: Permittivity of free space

- **Nature:**

- **Attractive** if charges are opposite.
- **Repulsive** if charges are like.

- **Vector Form:**

$$\vec{F}_{21} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$$

- where \hat{r} is a unit vector along the line joining the charges.

◆ Electric Field (E)

- **Definition:**

The **electric field** at a point is the **force experienced by a unit positive test charge** placed at that point.

$$\vec{E} = \frac{\vec{F}}{q}$$

- **Unit:**

- Newton per Coulomb (N/C) or Volt per meter (V/m)

- **For a Point Charge:**

$$E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$

- **Properties:**

- Direction: Away from +ve charge, toward -ve charge.
- It is a **vector quantity**.
- The **superposition principle** applies:
Total field = Vector sum of fields due to individual charges.

◆ Electric Field Lines

- **Concept:**

Electric field lines are **imaginary lines** that show the **direction of electric force** on a positive test charge.

- **Properties:**

1. Begin on positive and end on negative charges.
2. Do not intersect.
3. Density of lines \propto Field strength.
4. Perpendicular to the surface of a conductor.
5. Lines never form closed loops.

◆ Electric Dipole

- **Definition:**

An **electric dipole** consists of **two equal and opposite charges** separated by a small distance $2a$.

- **Dipole Moment:**

$$\vec{p} = q \times 2a$$

- Direction: From negative to positive charge.
- Unit: Coulomb–meter (C·m)

- **Electric Field due to Dipole:**

1. **On Axial Line:**

$$E_{axial} = \frac{1}{4\pi\epsilon_0} \frac{2p}{r^3}$$

2. **On Equatorial Line:**

$$E_{equatorial} = \frac{1}{4\pi\epsilon_0} \frac{p}{r^3}$$

- (Direction opposite to dipole moment)
- **Torque on Dipole in Uniform Field:**

$$\tau = pE\sin\theta$$

- **Potential Energy:**

$$U = -pE\cos\theta$$

◆ Electric Flux (Φ)

- **Definition:**

Electric flux is the **total number of electric field lines** passing through a surface.

- $\Phi = \vec{E} \cdot \vec{A} = EA\cos\theta$
 - Unit: N·m²/C
 - Scalar quantity.
 - Maximum when $\theta = 0^\circ$, Minimum when $\theta = 90^\circ$.

◆ Gauss's Law

- **Statement:**

The total **electric flux** through a closed surface equals $1/\epsilon_0$ times the total charge enclosed by the surface.

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\epsilon_0}$$

- **Applications:**

(a) Electric Field due to a Point Charge:

$$E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$

(b) Infinite Line of Charge:

$$E = \frac{\lambda}{2\pi\epsilon_0 r}$$

- where λ = linear charge density (C/m)

(c) Infinite Plane Sheet of Charge:

$$E = \frac{\sigma}{2\epsilon_0}$$

- where σ = surface charge density (C/m²)

◆ Electric Potential (V)

- **Definition:**

Electric potential at a point is the **work done per unit charge** in bringing a positive test charge from infinity to that point.

$$V = \frac{W}{q}$$

- For a point charge:

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

- **Relation Between Field and Potential:**

$$E = -\frac{dV}{dr}$$

- The **negative sign** indicates that potential decreases in the direction of the electric field.

◆ Equipotential Surfaces

- **Definition:**

A surface on which the potential is **same at every point**.

- **Properties:**

1. No work is done in moving a charge on an equipotential surface.
2. Electric field is always **perpendicular** to it.
3. Closer surfaces = Stronger electric field.
4. For a point charge, equipotential surfaces are **spherical**.

◆ Potential Energy of a System of Charges

- For two point charges q_1 and q_2 separated by distance r :

$$U = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$$

- For multiple charges:

$$U = \sum_{i < j} \frac{1}{4\pi\epsilon_0} \frac{q_i q_j}{r_{ij}}$$

◆ Conductors and Insulators

- **Conductors:**

Materials that allow charge to move freely.

Examples: Metals, graphite.

- **Properties:**

- Electric field inside conductor = 0
- Surface is equipotential
- Excess charge resides on the surface
- Electric field is normal to surface

- **Insulators (Dielectrics):**

Materials that do not allow free movement of charges.

Examples: Glass, rubber, wood.

◆ Capacitance and Capacitors

- **Definition:**

The **capacitance (C)** of a conductor is the **ratio of charge (Q)** stored to the **potential (V)** developed.

$$C = \frac{Q}{V}$$

- **Unit:** Farad (F)
- **For Parallel Plate Capacitor:**

$$C = \frac{\epsilon_0 A}{d}$$

- where A = plate area, d = distance between plates.

- **With Dielectric Medium:**

$$C = \frac{K\epsilon_0 A}{d}$$

- where K = dielectric constant.

- **Combination of Capacitors:**

1. **Series:** $\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$

2. **Parallel:** $C_{eq} = C_1 + C_2 + \dots$

◆ Energy Stored in a Capacitor

$$U = \frac{1}{2} CV^2 = \frac{1}{2} QV = \frac{Q^2}{2C}$$

- It is the work done in charging the capacitor.

◆ Applications of Electrostatics

- Capacitors in filters and tuning circuits
- Electrostatic painting and spraying
- Photocopiers and laser printers
- Electrostatic precipitators for pollution control
- Van de Graaff generator (high voltage source)

⚡ Quick Summary Table:

• Concept	• Symbol	• Formula	• Unit
• Electric Force	• F	• $\frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$	• N
• Electric Field	• E	• F/q	• N/C
• Potential	• V	• $\frac{1}{4\pi\epsilon_0} \frac{q}{r}$	• Volt

• Concept	• Symbol	• Formula	• Unit
• Dipole Moment	• p	• $q \times 2a$	• $C \cdot m$
• Capacitance	• C	• Q/V	• Farad
• Flux	• Φ	• $E \cdot A \cdot \cos\theta$	• $N \cdot m^2/C$